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Abstract 

The primary purpose of this paper is to demystify the vibrational motion caused 

by a typical inertial (Dean) drive when is attached to a heavier object (vehicle). A 

Dean drive consists of two symmetric eccentric masses which are rigidly 

connected to rotating rods and driven by (say electric) motors. Therefore, the 

force components along the line l which joins them are cancelled and thus the 

two rotating masses operate together as a single equivalent driving mass which 

vibrates along the perpendicular midline to l passing through the object. Hence 

the system “vehicle + drive” reduces to a “two-body” problem. The contra-

rotation of the two eccentrics is shown to cause a unidirectional displacement of 

the connected object for which closed-form analytical equations of motion are 

obtained in terms of the conservation of linear momentum. A first novel feature 

of the paper is that it discusses alternative design configurations. Within this 

context, the Dean-drive itself is shown to be almost equivalent to a spring-mass 

system attached above the vehicle whereas a similar vehicle’s motion is obtained 

when a single spring is put below the vehicle. In the hitherto published classical 

version of the air-operated mechanism, the vehicle performs a reduced travel 

distance until it reaches the upper point of its trajectory. A second novel feature 

of this work is to demonstrate that repeated (endless) unidirectional motion of the 

vehicle is ensured when external support forces are exerted periodically during 

specific short time intervals at the end of each cycle of the travel. 

Keywords: Vibrational motion; Dean drive; Inertial propulsion; Support force; 

Transportation. 

Nomenclature 

CM center of mass 

E energy (Nm) 

DOF degree of freedom 

F force (N) 

ks spring stiffness (m2) 

m eccentric mass (kg) 

M vehicle’s mass (kg) 

P linear momentum (kg m/s) 

r eccentricity (m)  

t time (s)  

T period of rotation (s) 

T* period of travel cycle (s) 

V  velocity (m/s)Z  height (m) 

Greek symbols 

 angle (rad) 

 constant (m) 

 angular velocity (rad/s) 

Subscripts 

1 rotating mass No. 1 

2 rotating mass No. 2 

1. Introduction

For a long time, vibration was considered mostly as a harmful side effect which accompanied the 

operation of machines and apparatus. Only in the last several decades has vibration been applied 

to obtaining useful effects, and have the so-called vibratory machines and devices appeared 

(Blekhman [1]). Typical examples are vibro-compactors used in modern hydrotechnical 
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construction, apparatus for concrete mixtures, vibro-machines and devices such as sizing screens, 

conveyors, feeders, mills, breakers, flotation machines, shakers and many other devices widely 

used in various industries (Blekhman [1]). 

Among the abovementioned mechanisms, a “Dean drive” is a patented device having two 

eccentric masses that rotate in opposite direction about parallel linear axes which are rigidly 

connected and driven by (say electric) motors (Dean [2]). When attached to an object (vehicle), 

under special circumstances it has the ability to drive it. And since this motion is due to (internal) 

inertial forces, we usually refer to “inertial propulsion”. One additional class of industrial 

applications of such a device are the micro-robot driving platforms (see Ju et al. [3], and 21 

papers therein), as well as larger mobile systems (see Lukanov et al. [4], and papers therein).  

For the sake of completeness, it is worthy to mention that despite the fame of the 

abovementioned Dean drive (Norman L. Dean was an American citizen who granted his USA 

patent in 1959), the idea of “inertial propulsion” is very old and first appeared in Europe. Thus 

ancient Greeks used to hold and move the so-called “halteres” to elongate their long jump 

(Minetti and Ardigo [5]). Also, in 1933, the Italian professor Marco Todeschini granted a patent 

for a centrifugal water powered propulsion motor with dissociated gradual automatic speed 

variation (Todeschini [6]). A mechanical analysis of the latter idea and detailed reasoning for 

considering eccentrics which follow eight-shaped paths, instead of circular ones, was later 

reported (see Provatidis [7] and papers therein).  

Although there are many out-of-stream older claims that a Dean drive is a supposed reactionless 

device producing motion without the exhaust of a propellant (for example, see Wikipedia [8], 

Dempewolff [9], Stine [10], and many YouTube videos accessible in Internet such as [11-19]), 

Provatidis [20] has shown that the secret is that the involved eccentrics must offer an initial 

velocity to the center of the mass of the system “object + drive” when it is left free to move. As a 

result, the object may perform a motion in the air, like an oscillating projectile, of course with 

decreasing average velocity at the center of mass due to the gravity. In other words, the system 

practically operates like a catapult which launches a projectile. For water [21] or ground [22] 

applications, the reduced travel distance is due to the dominating friction. Repeated endless 

motion on the ground may be achieved using the stick-slip phenomenon (see, Provatidis [23]). 

An extension of these ideas in the field of electromagnetic was reported by Provatidis and 

Gamble [24]; the latter study was carried out jointly by university and industry. 

Despite the above findings, the mechanical model of the Dean drive and its categorization in 

dynamics is still unclear, thus this paper continues the research on the following issues:  

1) To avoid any doubt, equations of motion will be derived in terms of the conservation of

linear momentum.

2) It will be shown that, with adequate accuracy, a Dean-drive unit can be substituted by an

undamped spring-mass system, or even by a single spring below the vehicle.

3) A specific procedure will be proposed to extend the reduced travel length and maintain

motion in the air toward a certain (say vertical upward) direction.

2. Equations of Motion

Here the model restricts to an object (vehicle) of mass M  lying on the horizontal ground. Two 

point masses (No. 1 and No. 2) also called “eccentrics”, each of mass m  are connected to 

corresponding rigid rods of length (radius) r  which are further attached to the aforementioned 
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vehicle at the points O1 and O2, respectively, and contra rotate at an angular velocity   (period 

2T  = ), as shown in Figure 1. The initial polar angle of the rigid bars at time 0t =  is denoted 

by 
0

 , whereas the initial center of mass of the entire system [mass total (2 )m M+ ] by CM0 

(note, in capital letters). The axis origin O has been chosen to be fixed in the middle of the initial 

segment O1O2, at a constant distance 
O

H  from the ground, where the inertial observer sits. At the 

arbitrary time instance t , the midpoint O  of the segment O1O2 of the vehicle and the position of 

the masses are denoted by 
M

Z  and 
m

Z , respectively (Figure 1).  

 
Figure 1. Initial and arbitrary position of the mechanical system. 

 

Figure 2. Equivalence of (a) Dean drive with (b) Spring-mass system. 
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Let us now focus on the action of the two rotating masses, of which the corresponding 

connecting rods form a polar angle ( )t = . The inertial observer understands two centripetal 

forces, Fcp1 and Fcp2, each of magnitude 2
m r , which are further analyzed in horizontal and 

vertical components, as shown in Figure2a. Due to the symmetry in the polar angles, the 

horizontal components are cancelled thus the total vertical component becomes 

      
2

,
2 sin

cp vert
F m r =                    (1) 

Following previous literature (Provatidis [7, 20]), the following parameter (in units of length) is 

introduced 

     
2

(2 )

mr

m M
 =

+
      (2) 

Based on the above configuration, the equations of motion may be derived choosing one of the 

following procedures: 

1) Newton’s Second Law applied to each of the two point masses, i.e. 2m and M, and 

elimination of the interaction force (due to Newton’s third law). 

2) Newton’s Second Law applied to the center of mass “CM” (of total mass 2m + M). 

3) Lagrange equations. 

4) Conservation of linear momentum. 

For the first time, we follow the procedure for the conservation of linear moment in order to 

derive the analytical expressions for the velocity ( )
M

V t  and the position ( )
M

Z t  of the vehicle.  

Assuming that initially the vehicle is at rest (
,0

0
M

V = ), we distinguish the initial (at time 0t = ) 

and the arbitrary (at time 0t  ) values of the system’s linear momentum, as follows: 

Initial:   0 0
0 2 cosP M m r =  +          (3) 

Arbitrary: 2 ( cos )
t M M

P M V m V r =  +  +       (4) 

The change 
0t

P P P = −  of the above quantities equals to the impulse of the external forces, i.e. 

the time-dependent integral 
0
[ (2 ) ]d (2 )

t

m M g m M gt− +  − + , which gives the vehicle’s 

velocity: 

0
( ) (cos cos )

M
V t gt   = − − −  ,     (5) 

As the velocity is the first derivative of the position with respect to the time t, i.e.  

( ) ( )
M M

dZ t dt V t= ,       (6) 

the time integration of Eq. (6) leads to  
21

0 02
( ) ( cos ) (sin sin )

M
Z t gt t    = − + − −     (7) 

The reader may recognize the classical terms ( )gt−  and 
2

( 1 2 )gt−  in Eq. (5) and (7), 

respectively, well known from college physics (e.g. Halliday and Resnick [25, p. 59]). One can 

also see the major importance of the initial polar angle 
0

 , and particularly the product 

0
( cos )  , in the second (linear) term at the right-hand side of Eq. (7). 

Equation (5) depicts that due to the oscillatory motion of the vehicle there are two time instances 

within each rotation of the eccentric rods at which its velocity vanishes (i.e., ( ) 0
M

V t = ). 



Provatidis               Vibration and Acoustics Research Journal                                                  Vol. 1, No. 1; 2019  

     

31 
 

Therefore it is safer to work with the velocity of the center of mass which is given by 

2

2

m M
CM

mV MV
V

m M

+
=

+
       (8) 

Since the vertical component of the velocity at each rotating mass is the sum of the absolute and 

relative motion: 

cosm MV V r = + ,       (9) 

by virtue of Eq. (2), at any time t, Eq. (8) finally becomes 

( ) ( ) cos ( )CM MV t V t t = +       (10) 

Therefore, assuming a vehicle initially at rest (
,0

0
M

V =  at t = 0), according to Eq. (10) the initial 

vertical velocity component of the center of mass in the mechanical system will be 

,0 ,0 0cosCM MV V  = +       (11) 

Elementary mechanics (e.g. [25, pp. 61-64]) referring to upward projectile motion, suggests that 

the upper point which the center of mass can reach at time 
max ,0CM

t V g=  is 2

max ,0
( ) (2 )

CM

CM
Z V g= , 

thus 
2

,0 0

max

( cos )

2

MCM
V

Z
g

 +
=       (12) 

and the time span from take-off to the upper point will be: 

,0 0

max

( cos )MV
t

g

 +
=      (13) 

When the upper point of the CM is reached, the position of the vehicle will be: 
1

0 02

2

max max max max( ) ( cos ) (sin ( ) sin )
M

Z t gt t t    = − + − − ,    (14) 

with the corresponding velocity  
  

0max max max( ) (cos ( ) cos )
M

V t gt t  = − − − ,                (15) 

At the same time, maxt , the position of each rotating mass will be: 

max max max( ) ( ) sin ( )m MZ t Z t r t= + ,     (16) 

with the corresponding vertical velocity component given by  

max max max( ) ( ) cos ( )m MV t V t r t = + ,     (17) 

Clearly, despite the fact that at the upper point the velocity of the CM vanishes, it is not for sure 

that both the vehicle and the rotating masses will be at rest as well, unless 
max

cos ( ) 0t =  [see Eq. 

(10)]. Otherwise, they are calculated using Eq. (15) and Eq. (17), respectively [see also Eq. (26a, 

b and c), for a numerical example].  

 3. Support Forces 

If the angular velocity   is assumed to be constant, the inertial (d’ Alembert) forces induced by 

the two rotating masses m  are directed outward in the radial direction and are finally transferred 

to the vehicle. As previously was mentioned, the contra rotation cancels the horizontal 

components of the inertial forces thus a vertical component of magnitude 2
2 sin

inert
F m r =  is 

exerted on the vehicle on excess of the dead weight 2mg  of the rotating masses. Therefore, 

considering the total weight of the system, (2 )m M g+ , while the vehicle is on the ground, the 

reaction force varies into the interval (2 )
inert

m M g F+  , given by 
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2
( ) (2 ) 2 sin

reac
F t m M g m r = + −     with  0

t  = + .    (18) 

Equation (18) is valid while the bottom of the vehicle is generally bonded to the horizontal 

ground. When the rods are in the horizontal position ( 0 =  or  ) the reaction force equals 

merely to the total weight (2 )m M g+ . Moreover, the maximum value of the reaction force 

appears for 3 2 =  or 2 = − , which corresponds to vertical downwards rods. Finally, when 

the rods become vertical upwards ( 2 = ) the reaction force takes its minimum value, either 

positive (compression) or negative (tension). In the latter case, the future situation depends on 

the condition between the bottom of the vehicle and the ground surface. Thus a tensile reaction 

force is possible only when the vehicle is bonded (e.g. glued or welded) to the ground.  

In contrast, when the vehicle is not bonded to the ground and the quantity 2
2m r  is greater than 

the total weight, (2m + M)g, it is expected that loss of contact between the vehicle and the ground 

will occur at a certain value of the polar angle   when the two rods are in the first and the 

second quadrants of the circle swept by each rod, respectively. In order to simplify things, we 

consider the easy-to-handle case in which the half-amplitude 22m r  is much greater than the 

total weight. Also we assume that when the rods become horizontal ( 2k = , where k  is an 

integer) tending to move upward, the ground (say the cover of a deep well below) suddenly 

opens and the vehicle is left free to move. In this case, the support (ground) force suddenly 

reduces from (2 )m M g+  (see Eq. (13)) to zero and remains to this value until probably the 

vehicle strikes to the ground and eventually on the bottom of the aforementioned well. The 

reason of resorting to the aforementioned meaning of the deep well is due to the avoidance of 

nonlinear contact problems, a matter which will be discussed in Section 6. 

For the sake of brevity, the concept to apply periodical support forces when the vehicle is thrown 

into the air is discussed only in Section 6. 

4. Alternative Configurations 

4.1. Equivalent Spring-Mass Oscillator 

The Dean drive is characterized by the following physical and geometric quantities: 

i) Angular velocity:  , thus frequency: (2 )f  = . 

ii) Eccentricity (radius): r . 

iii) Total rotating mass: 2rotm m= . 

Exactly the same action is achieved by replacing the Dean drive with a 1D spring-mass oscillator 

having the following characteristics: 

i) Spring stiffness: 2
2sk m= . 

ii) Half-amplitude of displacement: 
0

r = . 

iii) Oscillating mass: 2oscm m= . 

The abovementioned equivalency is valid only in case that an undamped oscillation is ensured in 

the spring-mass model. Ideally this equivalency holds only when the vehicle is fixed to the 

ground because only in that case we can ensure the constraint that the difference in the vertical 

position of the two masses (M and 2m) is perfectly harmonic given by 
2 1

sin
M m

u u Z Z r t−  − = . 

Otherwise u1 and u2 are independent one another as later will be shown in Eq. (21). 
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In more details, the kinetic energy of the two rotating masses (eccentrics) in the original Dean 

drive is 
2 2 21

2
2 ( )

Dean

kin
E m r m r =  =         (19) 

On the other hand, elementary dynamics suggests that in the spring-mass oscillator the maximum 

velocity will be equal to 
0 0

v r = = . Therefore, at each arbitrary position of the oscillating 

mass oscm  (i.e., at phase angle 
0

t  = + ) the length change of the spring will be 
0

sin  =  

thus, eventually, sinr = . Also, the velocity of the point mass oscm  will be 
0

cosv v =  thus, 

eventually, cosv r = . Therefore, the sum of the kinetic and elastic strain energy of the 1D 

oscillator will be 
2 21 1

2 2

2 2 21 1

2 2

2 2

2 ( cos ) (2 ) ( sin )

m m m

tot kin strain osc s
E E E m v k

m r m r

m r



   



= + =  + 

=  + 

=

 

 

(20) 

Comparing Eq. (19) with the final equality of Eq. (20), the coincidence in the kinetic energy 

between the Dean-drive and its spring-mass equivalent is obvious. Obviously, both systems exert 

the same maximum inertial force (i.e., 2

0
2

s
k m r = ; upward at 2 =  and downward at 

3 2 = ) and always have the same phase angle  . 

The advantage of the Dean drive is that it can per se ensure an undamped oscillation, whereas the 

advantage of the spring-mass model is that it can inspire the designer in order to choose a proper 

spring (
0

,
s

k  ) with a corresponding attached mass 2oscm m= . It is worthy to mention that if the 

selected spring-mass system has an angular velocity   and a maximum length change 
0

  

different than those of the Dean drive (i.e.,   and 
0

 , respectively) so as 2 2

0 0    , if this 

difference is bridged by modifying the attached mass so as 2 2

0 02oscm m    , then the same 

maximum inertial force will be derived and the same travel distance (i.e. maximum upper point) 

will be reached but the profile of the vehicle’s velocity will change (see section 5). 

It is worthy to mention that while the equivalence between Dean-drive and the spring-mass 

model is perfect when the vehicle is still at rest, however at later time instances the equation of 

undamped motion is obviously according to the general 2-DOF finite element formulation: 

1 1

2 2

0 1 1

0 2 1 1 2
s

u uM Mg
k

u um mg

−        
+ = −        

−        
    (21) 

In Eq. (21) the displacement variables 
1 Mu Z  (vehicle) and 

2 mu Z  (equivalent rotating mass) 

are not interrelated through the previously mentioned constraint, thus they are independent and 

generally we have 2 1 sinu u r −  . The solution of the system formed by the two differential 

equations in Eq. (21) can be solved using well known numerical analysis schemes such as 

Runge-Kutta (e.g. ode45 using MATLAB®) or even implementing analytical eigenvalue analysis, 

for the following initial conditions:  

1 1
(0) 0, (0) 0u u= =  and 

2 0 2 0
(0) sin , (0) cosu r u r  = =    (22) 
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4.2. Spring Below the Vehicle 

In principle, the action of the rotating masses could be substituted by fixing a spring of stiffness 

,s belowk  on the bottom of the vehicle, i.e. between the vehicle and the ground. Although the 

primary aim is to move the vehicle of mass M, for the sake of comparison we continue to deal 

with the total mass (2m + M) assuming the mass 2m fixed to the mass M. Initially, the spring 

below the vehicle is compressed by 
compress  and when is left free to upspring the maximum 

velocity 0V  of the body (2m + M) obeys the following condition (energy conservation): 
2 21 1

, 02 2
(2 )

s below compress
k m M V = +      (23) 

Setting the above initial velocity 0V  of the bonded masses to be exactly equal to the 

corresponding initial velocity of the center of mass in the system (2m, M) of the Dean-drive, 

which is given by Eq. (10), the stiffness 
,s belowk  can be arbitrary chosen. Among several choices, 

equal spring stiffnesses, i.e. 
2

, 2s below s mk k == , means that 
compress r = .  

5. Application and Results 

The condition,
2

2 (2 )m r m M g + , which was mentioned in Section 3, may be easily achieved, 

for example, considering the following data: 

• Rotating mass at the end of every rigid rod:    m  = 1∙0 kg 

• Mass of the object B:    M  = 5∙0 kg    

• Radius of rigid rod:    r  = 0∙10 m  

• Angular velocity:     = 314∙16 s-1 (3000 rpm)  

• Initial polar angle of the rods:    
0

0 = deg 

• Acceleration of gravity:    g  = 9∙81m/s2  

Then the inertial force is 287 times the total weight. 

In the text below, the subscripts “ M ” and “ m ” refer to the vehicle and the rotating masses, 

respectively. 

In this particular position (initial angle 
0

0 = ), the vehicle is at rest (initial velocity 
,0

0
M

V = ) 

thus the total linear impulse of the system equals to that of only the eccentrics, i.e. 
,0 2mV m r=  

and is directed upward (Figure 3, bottom). But after the eccentrics rotate by 90 degrees ( 2 =

in Figure 3, top), the velocity vectors of the masses become horizontal thus the relative vertical 

component of the momentum with respect to the vehicle vanishes while the absolute value (with 

respect to the ground origin O) equals to 2
M

mV  ( MV  is vehicle’s vertical velocity which is 

transmitted through the pin joints O1 and O2 to the rigid bars and the attached rotating masses. In 

the absence of gravitational acceleration ( 0)g = , the linear momentum is preserved, thus the 

kinematic state of the vehicle would change from calm to an upward velocity given by 

2 (2 )
M

V m r m M= + , or shortly by 
M

V =  [cf. Eq. (5)] with 2 (2 )mr m M = + . For the above 

specific data we have 0.0286  , which leads to a vehicle’s velocity 8.98 /
M

V m s  at the end of 

the first quarter of the first rotation of the rods. One may observe in Figure 4 that at the end of 

the first rotation the vehicle returns to the state of instantaneous calmness having elevated by 
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about 0.18m, of course by absorbing energy from the motor. It is also worthy to observe that the 

difference between gravity and no-gravity paths is very small. It is left to the reader to prove that 

the formula which determines the aforementioned height is merely 2  (  0.18). In the 

hypothetical case of absence of gravity the above procedure would repeat for ever thus an 

endless motion would occur. From a different point of view, when 0g =  (no external force) the 

existence of an initial velocity 
,0

2 (2 )
cm

V m r m M= + of the center of mass would lead to an 

endless upward motion (first Newton’s Law). 

 
Figure 3. Velocities. 

 

 
Figure 4. Vertical displacement of the vehicle for the first rotation. 
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But if gravity is taken into consideration as usual (i.e. 0g  ), according to Eq. (5) the vehicle’s 

velocity becomes: 

( 4)

2

(2 ) 2
M

m r g
V

m M 

 

=
= −

+
     (24) 

For the data assumed, the two terms in Eq. (24) equal to 8.9761 m/s (as previously for 0g = ) 

and 0.04905 m/s, respectively.  

To start the discussion, the key point is to determine the initial velocity of the system which 

equals to  

,0

0 2 2

2 2
cm

M m r mr
V

M m M m




 +
= =

+ +
    (25) 

Again, the abovementioned factor 2 (2 )mr m M = +  [see Eq. (2)] appears in Eq. (25) as well. 

Classical mechanics dictate that the highest point of the trajectory followed by system’s center of 

mass (CM) is given by 
2

max ,0
(2 )

cm
h V g=  and it appears at time 

max ,0cm
t V g= . At this time, the 

angular position of the rods is determined by the angle 
max

t = , whereas the vehicle and the 

concentrated masses will have the following velocities: 

Vehicle:                              max( ) cosMV t  = −         (26a) 

Eccentrics:                             max( ) cos
2

m

M
V t

M m


=

+
       (26b) 

Center of mass:                       max( ) 0cmV t =         (26c) 

Obviously, the highest point of the trajectory is reached after 
max

( )t T  rotations, which for the 

current date equals to 45.75 , i.e. 45 full rotations and three-quarters of the circle (leading to polar 

angle of the rods at 3 2 = ). It is worthy to clarify that, generally, at the highest point of the 

trajectory the position and the velocity of the rods as well as those of the vehicle is not a standard 

but depend on the values of the variables ( , , ,M m r  ). To facilitate the discussion, we have 

chosen the latter data so as at the time maxt t=  the rods are vertical downward (i.e. 3 2 =       

 cos 0 = ) thus both the vehicle and the eccentrics are instantaneously still (according to Eq. 

(26a) and Eq. (26b), respectively). 

It is worthy to mention that at a very short time after the highest point is reached (i.e. maxt t = +  

with   infinitesimal small), if no external force is applied to the system, the vehicle will 

accelerate moving downwards in a free fall, as shown in Figure 5. One may observe the slightly 

curly shape of the graph in both cases, the former being the absence of gravity (in red) and the 

latter the realistic case of 
2

9.81g m s=  (in blue).  

In contrast, if an external force (of variable magnitude) could be exerted on the bottom of the 

vehicle to preserve the vehicle at rest during the proceeding one-fourth of the period T  [i.e. for a 

time interval 4 (2 )
reac

t T   = = ] until the eccentrics become again horizontal (moving 

upward), the above cycle will be repeated, and so on. The aforementioned external force 

operates like an “invisible hand” which offers support, similar to the ground force shown in 

Figure 1 (bottom); the only difference is that it appears at a higher altitude 
M

Z .  
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Figure 5. Vertical displacement ( )
M

Z t  of the vehicle for the first 92 rotations (
max

0 2t t  ). 

 

In Figure 6 the first two cycles are presented. Each cycle consists of 45.75 rotations of the 

masses completed in a time interval equal to 
max

0.915st   (unloaded vehicle) plus 

0.005s
propulsion

T   (loaded vehicle), i.e. of period *

max 0.920spropulsionT t T = +  (46 full rotations). 

In Figure 6 one may distinguish the initial take-off time at which the cover of the well suddenly 

opens, as well as two successive peaks, P1 and P2, at the end of the first and second cycle. Such 

an external force could be implemented on the vehicle, for example, by releasing a small 

quantity of highly pressurized air in a vessel inside the vehicle. Although this means a certain 

mass loss in the vehicle ( M M  ), if this fact is ignored (for the sake of brevity) the 

monotonically increasing in the average sense red line of Figure 5 (corresponding to zero 

gravity: 0g = ) will be again obtained.  

 
Figure 6. Support force exerted on the bottom of the vehicle. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

0

2

4

6

8

10

12

14

16

18

Time [s]

Z
M

 [
m

]

HEIGHT OF VEHICLE

Absence of gravity (g=0)

g=9.81m/s2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

TAKE-OFF

P1 P2

PROPULSIVE FORCE

Time [sec]

F
re

a
c
ti
o
n
 [

N
]



Provatidis               Vibration and Acoustics Research Journal                                                  Vol. 1, No. 1; 2019  

     

38 
 

In more details, from the beginning  of the launch ( 0t = ) until the highest point, i.e. for the time 

interval 
maxf

T t= , the external force vanishes whereas immediately later it should suddenly take 

the maximum value 
2

[(2 ) 2 ]m M g m r+ +  and then it should decrease so as to withstand the 

inertial forces according to the expression (note that here, ignoring the integer multiples of 2π, 

we have ( 3 2 2    ): 

max

2 3

max 2

2 *

max

0 , 0

(2 ) 2 , ( )

(2 ) 2 sin ,

reaction

t t

F m M g m r t t

m M g m r t t T

 

 

 

= + + = =

+ −  







   (27) 

If these conditions are continuously repeated into a gravitational field of acceleration g , then a 

continuous motion of the vehicle is ensured. Of course, the ejection of the pressurized air (or any 

other physical means of which the reader may think) probably cause some secondary effects 

which are open to be studied. Note that when M  decreases the factor 2 (2 )mr m M = +  

increases as well, thus a greater height is obtained. Nevertheless, the general idea is that with the 

assistance of an external force of small duration (here, one-quarter of the full rotation), 

continuous vibrational projectile motion is theoretically possible. 

6. Discussion 

One may observe in Figure 7 that while minor difference exist in the vibration of the vehicle, all 

the three variations, i.e. the classical Dean-drive, the spring-mass model (section 4.1) and the 

spring below the vehicle (section 4.2) lead to the same upper point which depends only on the 

initial velocity of the center of mass. While in the pure Dean-drive and its approximate 

equivalent “spring-mass” system the vehicle oscillates, in the case of the spring below the 

vehicle (where no oscillating driving mass exists) no oscillation occurs. 

Regarding the spring stiffness, for the particular data of Section 5, we have
2 2

2 2 1.0 (314.16) 197,393( / )
s

k m N m= =   = , which is within the range of realistic values.  

 
Figure 7. Paths followed by the center of mass. 
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Let us now resolve some “paradoxes” and see some limits. Previous discussion can justify the 

fact that if a Dean drive is put (say) inside a closed box (vehicle) and the latter is left free to 

move at the time that the eccentrics are horizontal but moving upwards, it is not strange that the 

box will perform an upward projectile motion. Again, this is because the centre of mass has an 

initial velocity and therefore it will move toward its direction. In Eq. (12), it was shown that the 

highest point 
max

CM
Z  which may be reached by CM depends on the characteristic magnitude 

2 (2 )mr m M = + , where r  is the eccentricity of the rotating masses (each of them m ), the 

angular velocity   of the eccentrics and the cosine of the initial polar angle 
0

 . Depending on 

the choice of the masses m  and M  of the eccentric and the object, respectively, and the 

quantities 0( , , )r  , the ultimate height 
max

CM
Z  may be small or large. For example, choosing the 

aforementioned masses to be equal to those in the old Rutherford-Bohr model of hydrogen atom 

and the radius equal to the smallest possible quantized value (called the Bohr radius), an isolated 

atom or a properly synchronized hydrogen molecule (if could occur) could jump up to 72 km 

above the surface of the earth (see details in [20, pp. 63-64]).  

Therefore, the sudden jump of a closed box (when released to move) is neither magic nor should 

be attributed to new physics as claimed in the past [9, 10] but is simple Newtonian physics (i.e. 

the two-body problem) where a “hidden” initial velocity of the center of mass occurs. Newton’s 

Third Law is perfectly fulfilled thus the action equals to the reaction force; in other words, the 

internal forces between eccentrics and the vehicle (at points O1 and O2) are cancelled and the 

motion is controlled by the center of mass which may be considered as a point mass of 

magnitude (2 )m M+ . Therefore, despite many out-of-stream claims which may be found in 

Internet under the keyword “Inertial Propulsion”, Dean-drive is not a case study where 

“perpetual” motion could be produced. Although the reactionless propulsion is not possible 

because it violates the Newton’s Third Law and the Conservation of Momentum, demonstrations 

in water (see [11-17]) and ground (see [18-19]) have shown such a motion, leaving the audience 

to form misguided conclusions about what they saw with only the information in the video. The 

discussion of this paper fully resolves the physical phenomenon. 

No doubt that the conservation of laws of total energy and of linear momentum and angular 

momentum are fundamental to physics, being valid in all older and modern theories. 

Nevertheless, the possibility of an anomalous behavior due to the weak form of Newton’s third 

law has attracted the interest of many investigators. Acoustic waves in elastic rotating bars were 

found unsuccessful in order to rectify the alternating support forces and this happens due to the 

appearance of Coriolis forces [24, p. 319]. And since Coriolis forces do not appear in 

electromagnetic phenomena, an analogue electromagnetic drive was developed but nevertheless 

the detailed analysis revealed null net thrust in average sense [24, p. 329]. Generally, the secret is 

that the center of force cannot be at the same location as the center of mass; it must be offset 

(polarized). Particularly, in the current case of the mechanical system a proper 
0

cos  should be 

used in both eccentrics; however it is noted that more pairs may be used and a possible setup 

may be found in [24, p. 323].  

Although the spring stiffness which was introduced in this work for the first time was not 

involved in calculations, however it is a useful quantity to assist the design process. The designer 

has to look about the possible values the stiffness it may take and look for particular constructive 

solution that may replace the classical eccentrics by a different elastic structural component.  
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The reader may perhaps wonder why we have assumed that the cover of the well on which the 

vehicle stands is suddenly drawn when the system is left free to move. This was so because 

otherwise nonlinear contact effects could occur, thus modeling would become considerably more 

difficult without getting essential profit from this complexity. In fact, Figure 8 shows details for 

the actual path followed by the vehicle in the beginning of its motion. Clearly, despite the 

averaged upward motion a minor downward one (i.e. 0
M

Z  ) would occur when the initial 

situation refers to horizontal rods (
0

0  ). 

 
Figure 8. Path followed by the vehicle immediately after its motion. 

Another issue is the imposition of external force for small time intervals at the end of each 

motion cycle (of which duration was about 46 rotations). In more detail, the motion could be 

continuous if we had ensured a way to activate sliding supports (S1, S2, S3, etc) located at a given 

pitch Zmax along a vertical column parallel to the motion of the vehicle as shown in Figure 9. In 

more detail, the concept is that when the velocity of the vehicle vanishes nearby the upper point 

it can reach, the sliding support S1 (initially being short) suddenly extends moving to the right 

(dashed line in Figure 9). After one-fourth of rotation (for the particular data of this problem) the 

same support (S1) should be suddenly return back to the left (in order to avoid possible nonlinear 

contact phenomena as those shown in Figure 8) and thus leave the vehicle free to continue with a 

second travel cycle of almost another set of 46 rotations where the support S2 will be now 

activated in the same way as S1 did, and so on. Although this concept is obviously far away from 

the point to build an elevator to conquer the space, however it may be useful in the design of 

novel transport systems of goods. 

7. Conclusions 

It was shown that undamped vibrations caused by a Dean drive are almost equivalent to those 

induced by an auxiliary oscillating mass attached to a vehicle through a spring of proper 

stiffness. A third alternative is to use a spring below the vehicle and perform a certain 

compression. Under certain conditions, all the three aforementioned mechanisms may cause 

motion to the connected vehicle which will perform a travel of reduced length, say Zmax. In order 

to repeat the same travel length Zmax, in this paper two ways were proposed. The first is to apply 
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an external force at nearby the time the maximum travel distance is reached and the vehicle is 

temporarily at rest. This can be achieved using a micro-jet or even by mass expulsion such as 

that of a gas carried on the vehicle. For the particular case of vertical upward motion, the 

proposed second way is to use a fixed column to provide a number of supports (S1, S2, etc.) in 

order to offer instantaneous support to develop the proper support force (initial velocity of the 

center of mass thus initial impulse) which will ensure the completion of a second elevation cycle, 

and so on. The initial concepts developed in this work require considerable design and 

manufacturing effort until such a system is ready to work in an industrial environment. 

 
Figure 9. A vertical column with columns to assist continuous motion for the vehicle. 
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