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Abstract 

This investigation focused on the case of steady boundary layer flow and heat 

transfer of non-Newtonian fluid over a stretching sheet with Newtonian heating 

(NH), in which heat transfer from the surface is proportional to the local surface 

temperature. Casson fluid model is used to characterize the non-Newtonian fluid 

behavior. The transformed governing nonlinear boundary layer equations are 

solved numerically by means of the very robust computer algebra software 

MATLAB employing the routine bvpc45. Numerical solutions are obtained for 

heat transfer from the stretching sheet and the wall temperature for a Casson 

parameter and a large range of values of Prandtl number Pr. The Newtonian 

heating is controlled by a dimensionless conjugate parameter, which varies 

between zero (insulated wall) and infinity (wall temperature remains constant). 

The important findings in this study are the variation of the surface temperature 

and heat flux from the stretching surface with the Casson parameter , the 

conjugate parameter  and Prandtl number Pr. It is observed that these parameters 

have essential effects on the heat transfer characteristics. A comprehensive 

numerical computation is carried out for various values of the parameters that 

describe the flow characteristics, and the results are reported graphically.  

Keywords: Stretching sheet; Casson fluid; boundary layer, Newtonian heating. 

Nomenclature 

a Positive constant 

f Dimensionless stream function 

ℎ̃ Heat transfer parameter 

k Thermal conductivity 

Nu Nusselt number 

Pr Prandtl number 

𝑞𝑤 Surface heat flux 

Re Local Reynolds number 

T Temperature of the fluid  

(u, v) Velocity components of the fluid  

𝑢𝑤 Velocity of stretching sheet 

(x, y) coordinate axes 

Greek symbols 

 Thermal diffusivity 

 Casson parameter 

 Stream function 

 Kinematic viscosity 

 Conjugate parameter 

 Dimensionless temperature 

 Similarity variable 

Subscripts 

  Conditions at the surface of cylinder 

∞ Conditions in the free stream 

1. Introduction 

The situation with Newtonian heating arises in what are usually termed conjugate convective 

flows, where the heat is supplied to the convective fluid through a bounding surface with a finite 

heat capacity. This configuration occurs in many important engineering devices, for example in 

heat exchanger where the conduction in solid tube wall is greatly influenced by the convection in 
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the fluid flowing over it. Further, for conjugate heat transfer around fins where the conduction 

within the fin and the convection in the fluid surrounding it must be simultaneously analyzed in 

order to obtain the vital design information and also in convection flows set up when the bounding 

surfaces absorb heat by solar radiation (see Chaudhary and Jain [1, 2]). This results in the heat 

transfer rate through the surface being proportional to the local difference in the temperature with 

the ambient conditions. Merkin [3] has illustrated that, in general, there are four common heating 

processes specifying the wall-to-ambient temperature distributions, namely, (a) constant or 

prescribed wall temperature; (b) constant or prescribed surface heat flux; (c) conjugate conditions, 

where heat is supplied through a bounding surface of finite thickness and finite heat capacity. The 

interface temperature is not known a priori but depends on the intrinsic properties of the system, 

namely the thermal conductivity of the fluid and solid; and (d) Newtonian heating, where the heat 

transfer rate from the bounding surface with a finite heat capacity is proportional to the local 

surface temperature and which is usually termed conjugate convective flow. The free convection 

boundary layer flow along a vertical surface in a porous medium with Newtonian heating has been 

presented by Lesnic et al. [4]. Excellent reviews of the topics of conjugate heat transfer problems 

can be found in the book edited by Kimura et al. [5].  

Further, there has been an increasing interest in the flow of time-independent non-Newtonian 

fluids through tubes possessing a definite yield value because of their applications in polymer 

processing industries. The most popular among these fluids is the Casson fluid. We can define a 

Casson fluid as a shear thinning liquid which is assumed to have an infinite viscosity at zero rate 

of shear, a yield stress below which no flow occurs and a zero viscosity at an infinite rate of shear. 

The Casson model is a well-known rheological model for describing the non-Newtonian flow 

behavior of fluids with a yield stress [6]. A Casson fluid is a type of non-Newtonian fluid. The 

examples of Casson fluid are of the type are as follows: jelly, tomato sauce, honey, soup, 

concentrated fruit juices, etc. Human blood can also be treated as Casson fluid. Due to the presence 

of several substances like, protein, fibrinogen, and globulin in aqueous base plasma, human red 

blood cells can form a chainlike structure, known as aggregates or rouleaux. The model was 

developed for viscous suspensions of cylindrical particles [7]. Regardless of the form or type of 

suspension, some fluids are particularly well described by this model because of their nonlinear 

yield-stress-pseudoplastic nature. Examples are blood [8], chocolate [9], xanthan gum solutions 

[10]. The Casson model fits the flow data better than the more general Herschel–Bulkley model 

[11, 12], which is a power-law formulation with yield stress [13, 14]. For chocolate and blood, the 

Casson model is the preferred rheological model. It seems increasingly that the Casson model fits 

the nonlinear behavior of yield-stress-pseudoplastic fluids rather well and it has therefore gained 

in popularity since its introduction in 1959. It is relatively simple to use, and it is closely related 

to the Bingham model [13, 14], which is very widely used to describe the flow of slurries, 

suspensions, sludge, and other rheologically complex fluids [15]. Eldabe and Salwa [16] have 

studied the Casson fluid for the flow between two rotating cylinders, and Boyd et al. [17] 

investigated the Casson fluid flow for the steady and oscillatory blood flow. Boundary layer flow 

of Casson fluid over different geometries is considered by many authors in recent years. Nadeem 

et al. [18] presented MHD flow of a Casson fluid over an exponentially shrinking sheet. Kumari 

et al. [19] analyzed peristaltic pumping of a MHD Casson fluid in an inclined channel. Sreenadh 

et al. [20] studied the flow of a Casson fluid through an inclined tube of non uniform cross-section 

with multiple stenos. Mukhopadhyay et al. [21] studied the unsteady two-dimensional flow of a 

non-Newtonian fluid over a stretching surface having a prescribed surface temperature, the Casson 

fluid model is used to characterize the non-Newtonian fluid behavior. The details of steady, fully-

developed and laminar flow of Casson fluids have been described in Fung [22]. In view of the non-
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Newtonian nature of blood in capillaries and the filtration/absorption property of the walls, Oka 

[23] studied blood flow in capillaries with permeable walls using the Casson fluid model.  

Having in mind the above reported studies on the boundary layer flow due to stretching sheet, we 

venture further in the regime of two-dimensional flows of the Casson fluid. Casson fluid model is 

used to characterize the non-Newtonian fluid behavior. In addition, the fluid is taken to be 

electrically conducted and the flow is induced by a stretching sheet with Newtonian heating in 

which the heat transfer from the surface is proportional to the local surface temperature.  

2. Problem Analysis 

Consider the steady two-dimensional laminar flow and heat transfer of a non-Newtonian Casson 

fluid caused by a stretching sheet with Newtonian heating (NH) in which the heat transfer from 

the surface is proportional to the local surface temperature. Casson fluid model is used to 

characterize the non-Newtonian fluid behavior, (physical model and coordinate system is shown 

in Figure 1). In our analysis the x-axis and y-axis are taken as the coordinates parallel to the plate 

and normal to it, respectively, and the fluid occupies the region y ≥ 0. Moreover, we assume that 

the wall is subjected to a Newtonian heating of the form proposed by Merkin [3]. Moreover, the 

rheological equation of state for an isotropic and incompressible flow of a Casson fluid as [16] 

𝜏𝑖𝑗 = {
2 (𝜇𝐵 +

𝑃𝑦

√2𝜋
) 𝑒𝑖𝑗 ,         𝜋 > 𝜋𝑐

2 (𝜇𝐵 +
𝑃𝑦

√2𝜋𝑐
) 𝑒𝑖𝑗  ,         𝜋 < 𝜋𝑐

                                                  (1)                                     

where, 𝜏𝑖𝑗 is the (𝑖, 𝑗) -th component of the stress tensor, 𝜏𝑖𝑗 = 𝑒𝑖𝑗𝑒𝑖𝑗 and 𝑒𝑖𝑗 are the (𝑖, 𝑗) -th 

component of the deformation rate, 𝜋 is the product of the component of deformation rate with 

itself, 𝜋𝑐  is a critical value of this product based on the non-Newtonian model, 𝜇𝐵  is plastic 

dynamic viscosity of the non-Newtonian fluid, and 𝑃𝑦 is the yield stress of the fluid. So, if a shear 

stress less than the yield stress is applied to the fluid, it behaves like a solid, whereas if a shear 

stress greater than the yield stress is applied, it starts to move. Considering the balance laws of 

mass, linear momentum and energy and with the help of Boussinesq’s approximation the equations 

governing this flow can be written in the usual form as 
𝜕𝑢

𝜕𝑥
+ 

𝜕𝑣

𝜕𝑦
= 0 (2) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑣

𝜕2𝑢

𝜕𝑦2
 (3) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
 (4) 

 
Figure 1. Physical model and coordinate system. 



A. Mahdy                                               Heat and Mass Transfer Research Journal                                           Vol. 2, No. 2; 2018 

 

65 
 

The appropriate boundary conditions for the governing equations are  

𝑦 = 0,            𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥,           𝑣 = 0,          
𝜕𝑇

𝜕𝑦
= −ℎ̃𝑇   (NH) 

𝑦 → ∞,            𝑢 → 0,       𝑇 → 𝑇∞                                                                                                  (5)                                     

where, (𝑢, 𝑣) are the velocity components in (𝑥, 𝑦) directions, respectively, 𝜈 is the kinematic 

viscosity, and 𝛼 is the thermal diffusivity of the fluid. 𝑇 is the temperature of the fluid inside the 

thermal boundary layer, whereas 𝑇∞ is the ambient temperature, 𝛽 is the Casson parameter. 𝑢𝑤(𝑥) 

is the velocity of the stretching surface 𝑎 being a positive constant. ℎ̃ is the heat transfer parameter. 

In order to get a similarity solution of the problem we introduce the following non-dimensional 

variables. 

𝜂 = √
𝑎

𝜈
𝑦,            𝜓 = √𝑎𝜈 𝑥𝑓(𝜂),           𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇∞

(NH),   
 

𝜃(𝜂) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
    (CWT),           𝜃(𝜂) =

𝑘

𝑞𝑤

√
𝑎

𝜈
(𝑇 − 𝑇∞)    (CHF)         (6) 

The similarity solution proceeds by selecting a stream function such as 𝑢 =
𝜕𝜓

𝜕𝑦
 , 𝑣 = −

𝜕𝜓

𝜕𝑥
 so that 

the continuity equation (2) is automatically satisfied. 

Substituting Eq. (6) into Eqs. (3) and (4) we obtain the following ordinary differential equations, 

which are locally similar. 

(
1 + 𝛽

𝛽
) 𝑓′′′ + 𝑓𝑓′′′ − 𝑓′2 = 0 

(7) 

1

Pr
𝜃′′ + 𝑓𝜃′ = 0       (8) 

The boundary conditions (5) then turn into 

𝑓(0) = 0,     𝑓′(0) = 1,    𝜃′(0) = −𝛾(1 + 𝜃(0))       (NH)   

𝑓(𝜂 → ∞) → 0,                  𝜃(𝜂 → ∞) → 0           (9) 

Furthermore, considering the two cases 

𝜃(0) = 1     (CWT)           and          𝜃′(0) = −1        (CHF) 

The prime denotes ordinary differentiation with respect to the similarity variable, and 𝛾 = ℎ̃√
𝜈

𝑎
  is 

the conjugate parameter for Newtonian heating and Pr =  𝜈𝛼−1 is the Prandtl number. It is worth 

mentioning that when 𝛾 = 0, an insulated wall is presented and when 𝛾 → ∞, the wall temperature 

remains constant. 

In addition, the exact analytical solution of Eq. (7) is given as 

𝑓(𝜂) = 𝛽∗ (1 − 𝑒
−

𝜂
𝛽∗)  ,      𝑓′(𝜂) = 𝑒

−
𝜂

𝛽∗    ,   𝑓′′(𝜂) = −
1

𝛽∗
𝑒

−
𝜂

𝛽∗
 

(10) 

With 𝛽∗ = √1 +
1

𝛽
 , now, we can write that if 𝑓(𝜂) is given by the exact solution (10), then the 

temperature distribution 𝜃(𝜂) can be solved analytically as 

 𝜃(𝜂) = 𝐶1 ∫ 𝑒
−Pr ∫ 𝑓𝑑𝜂

∞
𝜂

∞

𝜂
𝑑𝜂 
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with 

𝐶1 = −
(1 + 𝜃(0))

𝑒−Pr ∫ 𝑓𝑑𝜂
∞

0

 (for NH) 
 

𝐶1 =
1

∫ 𝑒
{−Pr ∫ 𝑓𝑑𝜂

∞
𝜂

}
𝑑𝜂

∞

0

 (for CWT) (11) 

𝐶1 = −
1

𝑒
{−Pr ∫ 𝑓𝑑𝜂

∞
0

}
 (for CHF) 

 

In practical applications, the quantity of physical interest in our case is the local Nusselt number 

Nu, which can be written in non-dimensional form as  

𝑁𝑢 =
𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
 

Here 𝑞𝑤 , is the surface heat flux and defined as 𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)

𝑦=0
  and 𝑘  is the thermal 

conductivity. Considering the similarity variables (6) we may obtain 

𝑁𝑢

√𝑅𝑒
= 1 +

1

𝜃𝑤
 (for NH), or 

𝑁𝑢

√𝑅𝑒
= −𝜃𝑤

′  (for CWT), or 

𝑁𝑢

√𝑅𝑒
=

1

𝜃𝑤
 (for CHF) 

where 𝑅𝑒 = 𝑎𝑥2𝜈−1 is the local Reynolds number. 

3. Results and discussion 

Numerical calculations are obtained for the problem of boundary layer flow heat transfer of Casson 

fluid past a flat plate with Newtonian heating (NH) in which the heat transfer from the surface is 

proportional to the local surface temperature. The set of the coupled Equations (7) and (8) is highly 

nonlinear and cannot be solved analytically. Together with the boundary conditions (9) they form 

a two-point boundary value problem (BVP) which can be solved using the routine bvpc45 of the 

symbolic computer algebra software MATLAB by converting it into an initial value problem 

(IVP). In this way we have to choose a finite value of the boundary 𝜂 → ∞, say finit eh . Care has 

been taken in choosing finit eh for a given set of parameters because for a fixed value of finit eh for all 

calculations may produce inaccurate results. The results are given to carry out a parametric study 

showing influences of several non-dimensional parameters, namely, Casson parameter𝛽, Prandtl 

number Pr and conjugate parameter 𝛾. For the validation of the numerical results obtained in this 

study, the case when the Casson parameter is absent has been considered and compared with the 

previously published results. Tables 1-3 present the numerical values of temperature at the wall 

𝜃(0) (for NH, CWT and CHF cases) and temperature gradient −𝜃 ′(0) (for CWT case) along with 

the results reported by Hassanien et al. [24], Ishak et al. [25], Salleh et al. [26] and Elbashbeshy 

[27], which show an excellent agreement. Considering Newtonian fluid (i.e. 𝛽 → ∞), it is noticed 

that for the case of CWT, as Pr increases, the both values of 𝜃(0) and −𝜃 ′(0) increase. Moreover, 

for the case of CHF, the wall temperature 𝜃(0) decreases as Pr increases. However, for the case 

of NH, both 𝜃(0) and −𝜃 ′(0) decrease as Pr increases. On the other hand, it is observed that for 
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the case of NH, for small Prandtl number, the decrease in 𝜃(0) and −𝜃 ′(0) is very significant with 

increasing Prandtl number. The trend for NH case is similar to the CHF case but different from the 

CWT case. Table 3 presents the values of Nusselt number for CWT, CHF and NH cases with 

various values of Pr. From this table, it is found that the values of the local Nusselt number are 

very well comparable with the results reported by Hassanien et al. [24] and Ishak et al. [25] (for 

CWT case) and also Elbashbeshy [27] and Salleh et al. [26] (for CHF case). In addition, Table 4 

reported the local Nusselt number for different values of Casson parameter and it is clear that an 

increase in 𝛽 tends to decrease local Nusselt number for the two cases CHF and NH. 

 
Table 1. Comparison values of 𝜃(0) and −𝜃′(0) for various values of Pr when 𝛾 = 1 (NH), as 𝛽 → ∞. 

P r  
𝜃(0)  −𝜃 ′(0) 

Salleh et al. [26] Present Salleh et al. [26] Present 

5 

7 

10 

100 

1.76594 

1.13511 

0.76531 

0.16115 

1.773267 

1.130948 

0.764490 

0.147803 

 2.76594 

2.13511 

1.76531 

1.16115 

2.78326 

2.12794 

1.76449 

1.14780 

 

 

Table 2. Comparison values of 𝑁𝑢/√𝑅𝑒 for CWT, CHF and NH cases with different values of P r when 𝛾 = 1 (NH), 

as   𝛽 → ∞. 

P r  −𝜃 ′(0) (CWT)  𝜃(0) (CHF) 

Exact  

Eq. (11) 

Hassanien  

et al. [24] 

Salleh  

et al. [26] 
Present 

Exact  

Eq. (11) 

Hassanien 

et al. [24] 

Salleh  

et al. [26] 
Present 

0.72 

1.0 

3.0 

5.0 

7.0 

10.0 

100.0 

 

0.58202 

1.16525 

1.56805 

1.89540 

2.30800 

7.76565 

0.46325 

0.58198 

1.16525 

 

 

2.30801 

7.74925 

0.46317 

0.58198 

1.16522 

1.56806 

1.89548 

2.30821 

7.76249 

0.46317 

0.58198 

1.16524 

1.56801 

1.89539 

2.30801 

7.76233 

 

 

1.71816 

0.85819 

0.63773 

0.52759 

0.43327 

0.12877 

2.13767 

1.71792 

 

 

 

0.43341 

 

2.15902 

1.71828 

0.85817 

0.63770 

0.52755 

0.43322 

0.12851 

2.15512 

1.71801 

0.85818 

0.63770 

0.52757 

0.43325 

0.12862 

 

 
Table 3. Comparison values of 𝑁𝑢/√𝑅𝑒 for CWT, CHF and NH cases with different values of P r when 𝛾 = 1 (NH), 

as  𝛽 → ∞. 

P r  

−𝜃 ′(0) (CWT)  1/𝜃(0) (CHF)  1 + (1/𝜃(0)) (NH) 

Ishak et 

al. [25] 

Hassanien 

et al. [24] 
Present 

Elbashbeshy 

[27] 

Salleh  

et al. [26] 
Present 

Salleh  

et al. [26] 
Present 

0.72 

1.0 

3.0 

10.0 

 

0.5820 

1.1652 

2.3080 

 

0.58198 

1.16522 

2.30821 

0.46314 

0.58197 

1.16524 

2.30804 

 0.46780 

0.5820 

 

2.3080 

0.46317 

0.58210 

1.16527 

2.30728 

0.46314 

0.58197 

1.16524 

2.30801 

  

 

1.16595 

2.30666 

 

 

1.16581 

2.30806 

 

Figures 2 and 3 depict the effects of Casson parameter  on temperature and velocity, distributions 

for Casson fluid and Newtonian fluid (𝛽 → ∞), respectively considering the case of Newtonian 

heating (NH). The increasing values of the Casson parameter i.e. the decreasing yield stress (the 

fluid behaves as Newtonian fluid as Casson parameter becomes large) suppress the velocity field. 

The effect of increasing values of  is to reduce the rate of transport, and hence, the boundary layer 

thickness decreases. It is observed that 𝑓′(𝜂) and the associated boundary layer thickness are 

decreasing function of . The effect of increasing  leads to enhance the temperature profile. The 

thickening of the thermal boundary layer occurs due to increase in the elasticity stress parameter. 
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Influence of the conjugate parameter on heat transfer distribution for the case of Newtonian heating 

(NH) is shown in Figure 4. As it is observed increasing in conjugate parameter 𝛾 tends to increase 

the temperature distribution. Moreover, for the case of Newtonian heating (NH) increasing 

conjugate parameter 𝛾 tends to increase the temperature at surface 𝜃(0) and absolute value of 

𝜃′(0) , as observed from Figures 8 and 9. On the other hand, the behavior of the temperature 

distributions for the variation of Prandtl number considering the cases of (NH) with 𝛾 = 1  is 

illustrated in Figure 5. Prandtl number signifies the ratio of momentum diffusivity to thermal 

diffusivity. It is seen that the temperature decreases with increasing Pr.  Furthermore, the thermal 

boundary layer thickness decreases sharply by increasing Prandtl number. The temperature 

gradient at surface is negative for all values of Prandtl number as seen from Figure 6, which means 

that the heat is always transferred from the surface to the ambient fluid. Fluids with lower Prandtl 

number will possess higher thermal conductivities (and thicker thermal boundary layer structures), 

so that heat can diffuse from the surface faster than for higher Pr fluids (thinner boundary layers). 

Physically, if Pr increases, the thermal diffusivity decreases and this phenomenon leads to the 

decreasing of energy transfer ability that reduces the thermal boundary layer. In addition, Figure 7 

displays that an increase in temperature at the surface occurs with increasing Prandtl number. 
 

 
Figure 2. Variation of the temperature for various 

Casson parameter when 𝛾 = 1, 𝑃𝑟 = 10. 

 

 

 
Figure 4. Variation of the temperature for various 

conjugate parameter when 𝑃𝑟 = 10, 𝛽 = 1.2, 𝛽 → ∞. 

 
Figure 3. Variation of the velocity for various Casson 

parameter when 𝛾 = 1, 𝑃𝑟 = 10. 

 

 

 
Figure 5 Variation of the temperature for various 

Prandtl number when 𝛾 = 1, 𝛽 = 1.2, 𝛽 → ∞.  
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Figure 6. Variation of the wall temperature gradient 

with Casson parameter when 𝛾 = 1 for various Prandtl 

number. 

 

 

 
Figure 8. Variation of the wall temperature gradient 

with Casson parameter when 𝛾 = 1 for various 

conjugate parameter. 

 

 
Figure 7. Variation of the wall temperature with 

Casson parameter when 𝛾 = 1 for various Prandtl 

number. 

 

 

 
Figure 9. Variation of the wall temperature with 

Casson parameter when 𝑃𝑟 = 10 for various 

conjugate parameter. 

 

4. Conclusions 

A numerical solution is carried out to analyze the problem of steady, two dimension boundary layer 

flow and heat transfer of non-Newtonian Casson fluid over a stretching sheet with Newtonian 

heating. It is shown in this paper how the Prandtl number Pr, conjugate parameter and Casson 

parameter affect the temperature distribution, the wall temperature and the heat transfer coefficient. 

We can conclude that (for the case of NH): 

 The thermal boundary layer thickness depends on the conjugate parameter (Newtonian 

heating) 𝛾  . Moreover; it is found that an increase in 𝛾  results an increase in the temperature 

distribution. 

 The effect of increasing values of the Casson parameter 𝛽  is to suppress the velocity field, 

whereas the temperature is enhanced with increasing Casson parameter. Further Nusselt number 

decreases for the case of NH with increasing Casson parameter. 

 The thermal boundary layer thickness depends strongly on the Prandtl number Pr. Further, it is 

found that an increase in Pr results in a decrease of the temperature distribution. 
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Table 4. Values of 1/ 2/ ReNu  for CHF and NH cases with different values of 𝛽 when 𝛾 = 1. 

𝛽 P r  1/𝜃(0) (CHF) 1 + (1/𝜃(0)) (NH) 
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