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Abstract 

The prime objective of the present numerical investigation is to examine the effect 

of non-uniform internal energy generation on entropy generation rates in a plate 

dissipating heat into its surrounding stream of fluid. Employing second-order 

accurate finite difference schemes, the partial differential equation governing the 

temperature distribution in the plate is solved along with the partial differential 

equations governing the flow and thermal fields in the fluid by satisfying the 

continuity of temperature and heat flux at the solid-fluid interface.  Numerical 

results are presented and discussed for wide range of values of aspect ratio of the 

plate, conduction-convection parameter, total energy generation parameter, and 

flow Reynolds number. Finally, it is concluded that the assumption of uniform 

energy generation results in erroneous prediction of entropy generation rates.  

Further, it is found that error in prediction of global entropy generation rate 

increases with increase in conduction-convection parameter and flow Reynolds 

number, while it decreases with increase in aspect ratio of the plate and total energy 

generation parameter. 

Keywords: non-uniform energy generation; entropy generation; conjugate heat 

transfer; finite difference method 

Nomenclature 

𝐴𝑟  aspect ratio of the plate 

𝑏 width of fluid domain (m)       

𝑐𝑝 specific heat of fluid at constant pressure, 

(J/kgK) 

𝐻 height of the plate (m) 

𝑘 thermal conductivity (W/mK) 

𝑙𝑜 distance of the outflow boundary after 

trailing edge (m) 

𝑁𝑐𝑐  conduction-convection parameter 

𝑃𝑟 fluid Prandtl number  

𝑞′′′ volumetric energy generation (W/m3) 

𝑄 dimensionless volumetric energy generation 

function 

𝑄𝑡 total energy generation parameter                 

𝑅𝑒𝐻  flow Reynolds number 

𝑆𝑔𝑒𝑛
′′′  local entropy generation rate (W/m3K) 

𝑆𝑙 dimensionless local entropy generation rate 

𝑆𝑔 dimensionless global entropy generation rate 

𝑇 temperature (K) 

𝑇𝑜 maximum allowable plate temperature in the 

plate (K)    

𝑢 axial velocity component (m/s) 

𝑈 dimensionless axial velocity component 

𝑣 transverse velocity component (m/s)  

𝑉 dimensionless transverse velocity 

component  

𝑊 half width of the plate (m)               

𝑥 axial coordinate (m)                                    

𝑋 dimensionless coordinate in axial direction 

𝑦 transverse coordinate (m)                                

𝑌 dimensionless transverse coordinate  

Greek symbols 

𝜃 dimensionless temperature  

𝜃∞ dimensionless temperature parameter 

𝜇 dynamic viscosity (kg/ms)          

𝜈 kinematic viscosity (m2/s)      

𝜌 density (kg/m3)                             

Ψ dimensionless stream function 

Ω dimensionless vorticity 

Subscripts 

𝑓 fluid 
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𝑚𝑎𝑥 maximum 

𝑠          solid 

∞         free stream 

 

1. Introduction 

Rectangular plates having non-uniform internal energy generation find application in many 

thermal systems such as fuel elements of nuclear reactors [1].  The energy generated due to fission 

within the fuel element is first conducted within itself and eventually dissipated from its lateral 

surfaces to the surrounding stream of coolant so as to maintain the maximum temperature within 

the fuel element well within certain permissible limit [2]. As heat transfer process is irreversible, 

it results in entropy generation. This entropy generated has to be minimized since it is directly 

proportional to the lost available work [3]. Owing to the preceding facts, quite good number of 

researchers during the past four decades has paid their attention to the studies on minimization of 

entropy generation in thermal systems of different geometry. A brief review of the literature 

relevant to the present study is presented below.  

Bejan [4] analytically investigated the problem of entropy generation associated with a heat 

exchanger assuming uniform heat flux at the heat transfer surfaces. Poulikakos and Bejan [5] 

analytically investigated the problem of entropy generation minimization in fins of different 

geometries by assuming one-dimensional axial conduction within the fins and average heat 

transfer coefficient over their surfaces. San et al. [6] analytically investigated the problem of 

entropy generation arising out of heat and mass transfer in a parallel plate channel. The problem 

of entropy generation due to two-dimensional laminar mixed convection flow in a vertical channel 

with transverse fins attached on its hotter wall was numerically studied by Cheng et al. [7] and the 

effects of physical and geometrical parameters on distribution of entropy generation were 

presented. Ruocco [8] numerically investigated the problem of entropy generation associated with 

conjugate heat transfer from a plate having discrete heat sources. Shuja et al. [9] numerically 

studied the problem of entropy generation associated with conjugate conduction-forced convection 

heat transfer from a rectangular block with uniform volumetric heat source. They concluded that 

entropy generation in the coolant is negligible as compared to that in the block. Ibanez et al. [10] 

analytically studied the problem of entropy generation associated with steady state one-

dimensional conduction in a plate with uniform volumetric energy generation by assuming average 

heat transfer co-efficient over its surfaces.  Bautista et al. [11] analytically studied the problem of 

entropy generation associated with unsteady state one-dimensional conduction in a slab having 

uniform volumetric energy generation by assuming average heat transfer co-efficient over its 

surfaces. Varol et al. [12] numerically studied the problem of entropy generation arising due to 

conjugate natural convection in a differentially heated rectangular enclosure bounded by two 

vertical walls of different thicknesses. Mukhopadyay [13] numerically analyzed the problem of 

entropy generation associated with natural convection heat transfer occurring in square enclosures 

having discrete heat sources. Aziz and Khan [14] analytically as well as numerically investigated 

the problem of entropy generation associated with steady state conduction in a plane wall, a hollow 

cylinder and a hollow sphere having uniform volumetric heat generation. El Haj Assad [15] 

analytically studied the problem of entropy generation associated with steady state one-

dimensional conduction in a slab with non-uniform internal heat generation by assuming average 

heat transfer co-efficient over its surfaces.  Chen et al. [16] performed a numerical study on entropy 

generation associated with steady, laminar and fully developed mixed convection flow with 

viscous dissipation in a vertical parallel plate channel. Basak et al. [17] numerically analyzed the 

problem of entropy generation arising out of natural convection in inclined square cavities by 
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employing finite element method. Torabi and Zhang [18] analytically studied entropy generation 

rates in composite walls having temperature dependent internal energy generation by assuming 

steady state one-dimensional conduction within the slab and convective along with radiative 

conditions over its heat dissipating surfaces.  

An up-to-date review of the literature pertinent to entropy generation clearly reveals that with an 

exception of El Haj Assad [15], and Torabi and Zhang [18] all the investigators have paid their 

attention to entropy generation studies either with uniform internal energy generation or without 

internal energy generation. While El Haj Assad [15] assumed average heat transfer co-efficient at 

the heat dissipating surfaces, unrealistic convective along with radiative boundary conditions were 

imposed by Torabi and Zhang [18]. Moreover, these studies too are based on the assumption of 

steady, one-dimensional heat conduction within the solid. Deriving motivation from some of these 

shortcomings of the previous investigations, the present numerical study aims at examining the 

effect of non-uniform internal energy generation on entropy generation arising out of conjugate 

conduction-forced convection heat transfer from a rectangular plate to its surrounding fluid 

medium. 

2. Mathematical Formulation 

Figure 1 depicts an energy generating plate of height 𝐻, thickness 2𝑊 and thermal conductivity 

𝑘𝑠 dissipating heat into the surrounding stream of fluid having density 𝜌𝑓, dynamic viscosity 𝜇𝑓, 

specific heat 𝑐𝑝, and thermal conductivity 𝑘𝑓. The velocity 𝑈∞ and temperature 𝑇∞ of the fluid at  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Physical model 
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the upstream location are taken to be uniform. Under steady state operating conditions, the energy 

generated within the plate is first conducted to its lateral surfaces and finally dissipated to the 

surrounding stream of fluid. As a result, entropy is generated both in the plate as well as in the 

fluid flowing over it. However, the contribution of entropy generation in viscous fluid flow is 

found to be somewhat insignificant as compared to that in the solid [9]. For transforming the 

preceding stated physics of the problem into an appropriate mathematical model, the following 

additional approximations and assumptions are introduced: 

(i) The plate material is homogenous and isotropic. 

(ii) The thermo-physical properties of the plate material and fluid are constant.  

(iii) The heat conduction in the plate is two-dimensional. 

(iv) The fluid flow is incompressible, laminar, Newtonian, viscous and two-dimensional. 

The conjugate heat transfer problem stated above suggests that temperature distribution in the plate 

as well as flow and thermal fields in the fluid would be symmetric about the vertical axis of the 

plate. Therefore, either right or left half of the solution domain is needed to be considered as the 

computational domain.  Figure 2 illustrates such a computational domain with relevant boundary 

conditions in dimensionless form indicated thereon.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Computational domain 

 

 

𝑌, 𝑉 

𝜕𝛹

𝜕𝑋
= 0; Ω = 0; 𝜃𝑓 = 0 

 

𝜕𝜃𝑓

𝜕𝑌𝑓
= 0 

𝜃𝑠 = 𝜃𝑓 

 

𝜕𝜃𝑠

𝜕𝑌𝑠
= 0 

𝜕𝜃𝑓

𝜕𝑌𝑓
=

1

𝑁𝑐𝑐

𝜕𝜃𝑠

𝜕𝑌𝑠
 

Ω = −
𝜕2𝛹

𝜕𝑌𝑓
2 

𝜕𝜃𝑠

𝜕𝑋
= 0 

𝜃𝑠 = 0 

 

𝛺 = 0 

𝛹 = 0 

𝑏 

𝑋, 𝑈 𝜕𝛹

𝜕𝑋
= 0; 

𝜕Ω

𝜕𝑋
= 0; 

𝜕𝜃𝑓

𝜕𝑋
= 0 

𝜕𝜃𝑓

𝜕𝑌𝑓
= 0 

𝛺 = 0 

𝛹 = 𝛹𝑏 

𝑙0 

𝐻 

𝛹 = 0 



Favas and Jilani                                           Heat and Mass Transfer Research Journal                                     Vol. 1, No. 1; 2017 

  

39 
 

Introducing the assumptions and approximations stated above and by employing first law of 

thermodynamics, the dimensionless equation governing the two-dimensional steady state 

temperature distribution in the plate can be derived as: 

𝜕2𝜃𝑠

𝜕𝑋2
+ 4𝐴𝑟

2 (
𝜕2𝜃𝑠

𝜕𝑌𝑠
2 + 𝑄) = 0                                                                                                                   (1) 

It is worth emphasizing here that internal energy generation in the fuel elements of nuclear reactors 

is non-uniform and it is expressed in terms of cosine function of the axial coordinate [19]. For the 

present study, the dimensionless volumetric energy generation function 𝑄 appearing in Equation 

(1) is expressed as [20]: 

𝑄 = 𝑄𝑚𝑎𝑥 𝑐𝑜𝑠𝜋 (
1

2
− 𝑋)                                                                                                                            (2) 

In order to compare entropy generation rates in the plate having non-uniform internal energy 

generation with those of uniform ones on equitable terms, total energy generation parameter 𝑄𝑡 is 

used as a common input parameter which is essentially obtained by integrating 𝑄 over the volume 

of the plate [20]. Thus, total energy generation parameter 𝑄𝑡 is expressed in terms of maximum 

dimensionless energy generation rate 𝑄𝑚𝑎𝑥 as: 

𝑄𝑡 =  
2

𝜋
𝑄𝑚𝑎𝑥                                                                                                                                                 (3) 

The dimensionless equations governing the flow and thermal fields in the fluid can be expressed 

as: 

Stream function: 

𝜕2𝛹

𝜕𝑋2
+

𝜕2𝛹

𝜕𝑌𝑓
2 = −Ω                                                                                                                                       (4) 

Vorticity transport: 

𝑈
𝜕Ω

𝜕𝑋
+ 𝑉

𝜕Ω

𝜕𝑌𝑓
=

1

𝑅𝑒𝐻
(

𝜕2Ω

𝜕𝑋2
+

𝜕2Ω

𝜕𝑌𝑓
2)                                                                                                      (5) 

Energy: 

𝑈
𝜕𝜃𝑓

𝜕𝑋
+ 𝑉

𝜕𝜃𝑓

𝜕𝑌𝑓
=

1

𝑅𝑒𝐻𝑃𝑟
(

𝜕2𝜃𝑓

𝜕𝑋2
+

𝜕2𝜃𝑓

𝜕𝑌𝑓
2)                                                                                              (6) 

Where, the dimensionless stream function, Ψ and dimensionless vorticity, Ω appearing in 

Equations (4) and (5) are defined as: 

𝑈 =
𝜕𝛹

𝜕𝑌𝑓
,     𝑉 = −

𝜕𝛹

𝜕𝑋
 and Ω =

𝜕𝑉

𝜕𝑋
−

𝜕𝑈

𝜕𝑌𝑓
                                                                                           (7) 
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The dimensionless parameters and variables present in Equations (1) - (7) are defined as: 

𝑋 =
𝑥

𝐻
,           𝑌𝑠 =

𝑦

𝑊
,           𝑌𝑓 =

𝑦

𝐻
,     𝑈 =

𝑢

𝑈∞
,        𝑉 =

𝑣

𝑈∞
 ,          𝜃 =

𝑇− 𝑇∞

𝑇0 −  𝑇∞
 

𝐴𝑟 =
𝐻

2𝑊
,       𝑁𝑐𝑐 =

𝑘𝑓

𝑘𝑠
[
𝑊

𝐻
] ,

𝑃𝑟 =   
𝜇𝑓𝑐𝑝

𝑘𝑓
,       𝑄 =

𝑞′′′𝑊2

𝑘𝑠 (𝑇0 − 𝑇∞)
 ,      𝑅𝑒𝐻 =

𝑈∞ 𝐻

𝜈𝑓
           (8) 

Local entropy generation rate 𝑆𝑙 in the plate can be computed from the temperature distribution 

using the following equation: 

𝑆𝑙 =
1

(𝜃𝑠 + 𝜃∞)2
[

1

4𝐴𝑟
2 (

𝜕𝜃𝑠

𝜕𝑋
)

2

+ (
𝜕𝜃𝑠

𝜕𝑌𝑠
)

2

]                                                                                              (9) 

Where, symbols 𝑆𝑙 and  𝜃∞ present in Equation (9) are defined as 𝑆𝑙 =
𝑆𝑔𝑒𝑛

,,, 𝑊2

𝑘𝑠
 and 𝜃∞ =

  𝑇∞

𝑇0− 𝑇∞
 , 

respectively. Once, the values of  𝑆𝑙 in the plate is obtained, the global entropy generation rate 𝑆𝑔 in 

the plate can be computed by employing the following integral equation:  

𝑆𝑔 = 2 ∫ ∫ 𝑆𝑙(𝑋, 𝑌𝑠)𝑑𝑋𝑑𝑌𝑠

1

0

−1

0

                                                                                                                   (10) 

3. Numerical Solution 

Equations (1), (4), (5) and (6) are coupled partial differential equations and therefore, these 

equations have to be solved numerically in an iterative manner. While Equations (1) and (4) are 

discretized using central difference schemes and the resulting system of linear algebraic equations 

are solved using Line-by-Line Gauss-Seidel iterative solution procedure, pseudo-transient forms 

of Equations (5) and (6) are discretized using ADI finite difference scheme and the resulting system 

of linear algebraic equations are solved iteratively by employing Thomas Algorithm. Once the 

converged values of temperature field in the plate is obtained, local and global entropy generation 

rates are computed using Equations (9) and (10), respectively.  

The numerical results presented in this paper are computed using an indigenously developed 

computer code which takes care of different kinds of boundary conditions merely by an artefact of 

computer programming. This code, which is essentially developed for computing steady, two-

dimensional temperature distribution in an energy generating plate and steady, two-dimensional 

flow and thermal fields in the fluid, can also generate numerical results for conjugate conduction-

forced convection in a rectangular fin. Figure 3 illustrates a comparison of temperature distribution 

in a rectangular fin along solid-fluid interface obtained using the present code with those of Sunden 

[21] which can be seen to be in good agreement. The details of the grid convergence tests 

performed are not presented for the sake of brevity. 
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Figure 3. Comparison of solid-fluid interface temperature profile with that of Sunden [21] for different values of 𝑁𝑐𝑐 

4. Results and Discussion 

The prime objective of the present numerical study is to examine the effect of non-uniform internal 

energy generation on entropy generation rates in a plate dissipating heat into surrounding fluid 

medium by forced convection. Keeping fluid Prandtl number 𝑃𝑟 and dimensionless temperature 

parameter 𝜃∞ as fixed at 0.005 and 0.4 respectively, numerical results in the form of transverse 

profiles of dimensionless plate temperature  𝜃𝑠  and local entropy generation rate 𝑆𝑙 , and in the 

form of variation of global entropy generation rate  𝑆𝑔 with involved thermo-geometric parameters 

such as aspect ratio of the plate 𝐴𝑟, conduction-convection parameter 𝑁𝑐𝑐, total energy generation 

parameter 𝑄𝑡 and flow Reynolds number 𝑅𝑒𝐻 are presented and discussed in detail. 

Figure 4 depicts the effect of non-uniform volumetric energy generation on transverse variation 

of 𝜃𝑠 in the plate at two distinct axial locations 𝑋 = 0.25 and 𝑋 = 0.75, while the values of 𝐴𝑟, 𝑁𝑐𝑐, 

𝑄𝑡 and 𝑅𝑒𝐻 are being kept constant at 10, 0.50, 0.50 and 2500 respectively.  It is worth noticing 

from this figure that uniform internal energy generation assumption results in significant 

underestimation of  𝜃𝑠 , which becomes more and more pronounced towards the central line of the 

plate. Further, it can be noted that the underestimation of  𝜃𝑠 due to the assumption of uniform 

energy generation decreases towards the trailing edge of the plate and it even results in slight 

overestimation of 𝜃𝑠 in the vicinity of solid-fluid interface near the trailing edge of the plate. 

Precisely, error in prediction of  𝜃𝑠 in the vicinity of the central line of the plate decreases from 

11.07% at  𝑋 = 0.25 to 4.52 % at 𝑋 = 0.75. 

Figure 5 exhibits the effect of non-uniform internal energy generation on transverse variation of 𝑆𝑙 

in the plate at two different axial locations, while the values of 𝐴𝑟, 𝑁𝑐𝑐, 𝑄𝑡 and 𝑅𝑒𝐻 are being kept 

constant at 10, 0.50, 0.50 and 2500 respectively.  It is abundantly clear from this figure that, for 

both uniform and non-uniform energy generation cases,  𝑆𝑙 takes its maximum value in the vicinity 

of the solid-fluid interface and it keeps on decreasing to its minimum value along the central line 

of the plate. Further, it is worth noticing from this figure that the assumption of uniform internal 

energy generation results in underestimation of 𝑆𝑙 except in the region very close to the central line 

of the plate. Furthermore, it can be clearly noticed from this figure that underestimation of 𝑆𝑙 due 

to the assumption of uniform energy generation decreases towards the trailing edge of the plate. 

Precisely, it can be noted that error in prediction of 𝑆𝑙 in the vicinity of the lateral surface of the 
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plate decreases from 20.13% at 𝑋 = 0.25 to 5.06 % at 𝑋 = 0.75. 

 

 

 

Figure 4. Comparison of transverse temperature profiles between uniform and non-uniform energy generation cases 

 

 
Figure 5. Comparison of transverse local entropy generation rate profiles between uniform and non-uniform energy 

generation cases 
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increase in 𝑁𝑐𝑐. To be very precise, for 𝐴𝑟= 2.5, the percentage error in the prediction of 𝑆𝑔  

increases from 8.66% to 10.22% as 𝑁𝑐𝑐 increases from 0.40 to 0.70. 
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Figure 6. The effect of non-uniform energy generation on the variation of 𝑆𝑔 with  𝐴𝑟 for different values of  𝑁𝑐𝑐 

 

Figure 7 presents the variation of 𝑆𝑔 with  𝐴𝑟 for two different values of 𝑅𝑒𝐻 while  𝑁𝑐𝑐 = 0.50 and 

 𝑄𝑡 = 0.50 are being kept constant.  It is worth noticing from this figure that  𝑆𝑔 decreases with 

increase in 𝐴𝑟 for both uniform and non-uniform energy generation cases. Further, it can be noted 

from this figure that error in prediction of  𝑆𝑔 due to the assumption of uniform energy generation 

decreases as 𝐴𝑟 takes its higher and higher values. To be very precise, for 𝑅𝑒𝐻 = 3500, the under 

prediction of  𝑆𝑔 due to the assumption of uniform energy generation decreases from 9.83% to 

3.07% as  𝐴𝑟 increases from 2.5 to 15. Furthermore, it is interesting to note that, for 𝑅𝑒𝐻 = 1500, 

the assumption of uniform energy generation results in slight overestimation of  𝑆𝑔  for all values 

of  𝐴𝑟 ≥ 7.5. 

 
Figure 7. The effect of non-uniform energy generation on the variation of 𝑆𝑔 with  𝐴𝑟 for different values of 𝑅𝑒𝐻 
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generation cases,  𝑆𝑔 keeps on increasing with increase in  𝑁𝑐𝑐.  It is also evident that, the 

assumption of uniform energy generation results in erroneous prediction of  𝑆𝑔 which is more 

noticeable for larger values of  𝑁𝑐𝑐 and 𝑅𝑒𝐻. Precisely, for 𝑅𝑒𝐻 = 3500, underestimation of  𝑆𝑔  due 

to the assumption of uniform energy generation increases gradually from 0.50% to 6.29% as  𝑁𝑐𝑐  

increases from 0.35 to 0.75. 

 
Figure 8. The effect of non-uniform energy generation on the variation of 𝑆𝑔 with 𝑁𝑐𝑐 for different values of 𝑅𝑒𝐻 

 

Figure 9 depicts the effect of non-uniform internal energy generation on the variation of  𝑆𝑔 with 𝑄𝑡 

for two different values of  𝑁𝑐𝑐 while  𝐴𝑟 = 10 and 𝑅𝑒𝐻 = 2500 are being kept constant. It is worth 

noticing from this figure that  𝑆𝑔 increases appreciably with increase in 𝑄𝑡 for both cases. It can be 

also noted from this figure that, the error in prediction of 𝑆𝑔 due to the assumption of uniform 

energy generation increases with increase in the value of 𝑁𝑐𝑐. Precisely, at 𝑄𝑡= 0.25, 

underestimation of  𝑆𝑔  due to the uniform energy generation assumption increases gradually from 

7.32% to 10.66% as 𝑁𝑐𝑐 increases from 0.40 to 0.70. Further, it is worth mentioning here that, 

error in prediction of 𝑆𝑔 due to the assumption of uniform energy generation decreases as  𝑄𝑡 takes 

its larger values. Furthermore, it is interesting to note that, for 𝑁𝑐𝑐= 0.40, the assumption of 

uniform energy generation results in slight overestimation of  𝑆𝑔  for all values of  𝑄𝑡  ≥ 0.50. 

Figure 10 depicts the effect of non-uniform internal energy generation on the variation of 𝑆𝑔 

with 𝑅𝑒𝐻 for two distinct values of  𝑄𝑡 while  𝐴𝑟 = 10 and 𝑁𝑐𝑐 = 0.50 are being kept constant. It is 

abundantly clear from this figure that  𝑆𝑔 increases with increase in 𝑅𝑒𝐻 for both cases. It is also 

evident from this figure that underestimation in 𝑆𝑔 due to the assumption of uniform energy 

generation increases with increase in 𝑅𝑒𝐻. To be very precise, for  𝑄𝑡  = 0.25, the percentage error 

in prediction of  𝑆𝑔  increases from 6.76% to 9.95% as 𝑅𝑒𝐻 increases from 1500 to 3500. 
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Figure 9. The effect of non-uniform energy generation on the variation of 𝑆𝑔 with 𝑄𝑡 for different values of 𝑁𝑐𝑐 

 

 
Figure 10. The effect of non-uniform energy generation on the variation of 𝑆𝑔 with 𝑅𝑒𝐻 for different values of 𝑄𝑡 

5. Conclusions 

The main objective of the present investigation is examining the effect of non-uniform internal 

energy generation on local and global entropy generation rates in a plate dissipating heat into its 

surrounding fluid medium by conjugate forced convection. Keeping fluid Prandtl number and 

dimensionless temperature parameter as fixed, numerical results are obtained for wide range of 

values of aspect ratio of the plate 𝐴𝑟, conduction-convection parameter 𝑁𝑐𝑐 , total energy 

generation parameter  𝑄𝑡 and flow Reynolds number 𝑅𝑒𝐻. On the basis of discussion of the results, 

it is concluded that idealistic uniform internal energy generation results in erroneous prediction of 

local and global entropy generation rates.  Further, it is found that under prediction of global 

entropy generation rate 𝑆𝑔 in the plate increases considerably with increase in 𝑁𝑐𝑐  and 𝑅𝑒𝐻. 

Furthermore, it is found that error in prediction of 𝑆𝑔 due to uniform energy generation assumption 

slightly decreases with increase in 𝐴𝑟 and  𝑄𝑡.  
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